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Abstract. A new method for continuous global minimization problems, acronymed SCM, is intro-
duced. This method gives a simple transformation to convert the objective function to an auxiliary
function with gradually ‘fewer’ local minimizers. All Local minimizers except a prefixed one of the
auxiliary function are in the region where the function value of the objective function is lower than
its current minimal value. Based on this method, an algorithm is designed which uses a local optim-
ization method to minimize the auxiliary function to find a local minimizer at which the value of the
objective function is lower than its current minimal value. The algorithm converges asymptotically
with probability one to a global minimizer of the objective function. Numerical experiments on a set
of standard test problems with several problems’ dimensions up to 50 show that the algorithm is very
efficient compared with other global optimization methods.
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1. Introduction

Many engineering applications and social problems, especially in recent years the
molecular structure prediction problems, can be formulated as nonlinear function
optimization problems in which the function to be optimized possesses many local
minimizers in the solution space. In most cases, it is desired to find the local
minimum at which the function takes its lowest value, i.e., the global minimum.
Many methods have been developed for continuous global optimization problems.
Some of them try to escape from local minima by modifying the objective function
to a function with ‘fewer’ local minimizers, and then developing algorithms to
minimize the modified objective function to find local minimizers of the original
objective function with lower function values.

The diffusion equation method [7, 8], the effective energy method [2, 3, 12] and
a continuation based integral transformation scheme [4, 13] approximate the coarse
structure of the original objective function using a parameterized set of smoothed
objective function with ‘fewer’ local minimizers. All these methods transform the
original objective function into a family of smoothed functions via integration of
the original objective function. Such integrations are too expensive to compute at
run time.
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Several methods do not integrate the original objective function. The Terminal
Repeller Unconstrained Sub-energy Tunneling [1] modifies the objective func-
tion f (x) as a Sub-energy Tunneling Function Esub(x, x

∗
1 ), where x∗

1 is a current
minimal solution, which has a property that

Esub(x, x
∗
1 ) �

{
0, f (x) � f (x∗

1 ),

f (x) − f (x∗
1 ), f (x) < f (x∗

1 ).

However, to minimize the Sub-energy Tunneling Function this method has to in-
tegrate a dynamical system rather than use a local optimization method as a sub-
routine. The filled function methods [5, 6] modify the objective function as a filled
function, and then use a local optimization method to minimize the filled function
to find local minimizers of the original objective function with lower function val-
ues. The filled functions have an advantage that they have no local minimizers or
stationary points in the region {x : f (x) � f (x∗

1 )} except prefixed, but they have a
disadvantage that they have some parameters which are difficult to adjust.

In this paper, we give a simple transformation method to convert the original
objective function f (x) into an auxiliary function with gradually ‘fewer’ local
minimizers. The auxiliary function contains one parameter which is easy to set.
Let f ∗

1 be the best minimal value of the original objective function found up to
now. The auxiliary function is ‘convex’ on the domain {x ∈ X : f (x) � f ∗

1 },
and also has the advantage that it has no local minimizers or stationary points in
the region {x ∈ X : f (x) � f ∗

1 } except prefixed, where X is the solution space.
Moreover, if f ∗

1 is smaller, then the region is larger, and at last the auxiliary function
is convex if f ∗

1 is the global minimal value of the original objective function. We
use a local optimization method to minimize the auxiliary function to find a better
local minimizer of f (x). A stopping criterion of our method is developed based
on the Bayesian stopping rules for multistart global optimization methods [10].
An algorithm is designed based on this method, and we prove that it can converge
asymptotically with probability one to a global minimizer of the original problem.
Numerical experiments on a set of standard test problems with several problems’
dimensions up to 50 show that our algorithm is very efficient compared with other
global optimization methods.

2. Sequential convexification method

Consider the following global minimization problem

(P )

{
min f (x)

s.t. x ∈ X,

where X is a bounded closed box in Rn, and f (x) is continuously differentiable on
X.

Suppose that f ∗
1 is the current minimal value of problem (P ). Before solving

problem (P ), we can get f ∗
1 using any local optimization method to minimize f (x)
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on X, or for simplicity, we just take any point x′ in X, and let f ∗
1 be the value of

f (x′).
Let u(t) be a continuously differentiable univariate function, u(0) = 0, u′(0) =

0, and let u′(t) > 0, ∀t > 0 so that u(t) is a strictly monotonically increasing
function of t for t � 0. Let v(x) � 0 be a continuously differentiable convex
function on X which has only one minimizer xv and has no stationary points except
xv on X. Then we construct the following auxiliary function

F(x, f ∗
1 ) = v(x)[1 − h · u(max{0, f ∗

1 − f (x)})],
where h � 0 is a parameter. Obviously, F(x, f ∗

1 ) is a smooth function, and by
choosing v(x) and u(t) appropriately, we can make F(x, f ∗

1 ) as smooth as f (x).
Construct the following auxiliary global minimization problem

(AP )

{
min F(x, f ∗

1 )

s.t. x ∈ X.

Problem (AP ) has the following properties.

THEOREM 1. Suppose that f ∗
1 is already the global minimal value of problem

(P ). Then problem (AP ) has a unique minimizer xv .
Proof. If f ∗

1 is already the global minimal value of problem (P ), then ∀x ∈ X,
f (x) � f ∗

1 , and max{0, f ∗
1 − f (x)} = 0, F(x, f ∗

1 ) = v(x). By the assumption
that v(x) has only one minimizer xv on X, we conclude that problem (AP ) has a
unique minimizer xv . �

By the proof of Theorem 1, we know that if f ∗
1 is the global minimal value of

problem (P ), then F(x, f ∗
1 ) is a convex function, and problem (AP ) is a convex

programming problem. Moreover we have the following theorem.

THEOREM 2. If f (xv) > f ∗
1 , or xv is a local minimizer of problem (P ) with

f (xv) � f ∗
1 , then xv is a local minimizer of problem (AP ).

Proof. If f (xv) > f ∗
1 , or xv is a local minimizer of problem (P ) with f (xv) �

f ∗
1 , then there exists a neighbourhood B(xv) of xv such that ∀x ∈ B(xv) ∩ X,

f (x) � f ∗
1 . Thus ∀x ∈ B(xv) ∩ X,

F(x, f ∗
1 ) = v(x)[1 − h · u(max{0, f ∗

1 − f (x)})] = v(x).

Since v(x) has only one local minimizer xv , we have

F(x, f ∗
1 ) = v(x) � v(xv),∀x ∈ B(xv) ∩ X,

i.e., xv is a local minimizer of problem (AP ). �
Next we discuss the locations of other local minimizers of problem (AP ).
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THEOREM 3. Any one of local minimizers or stationary points of problem (AP )

except xv cannot be in the region S1 = {x ∈ X : f (x) � f ∗
1 }.

Proof. The derivative of F(x, f ∗
1 ) is

�F(x, f ∗
1 ) = �v(x)[1 − h · u(max{0, f ∗

1 − f (x)})] − v(x) · h·
u′(max{0, f ∗

1 − f (x)}) · (− � f (x)).

∀x ∈ S1, we have f (x) � f ∗
1 , max{0, f ∗

1 −f (x)} = 0 and u(max{0, f ∗
1 −f (x)}) =

0, u′(max{0, f ∗
1 − f (x)}) = 0. Thus

�F(x, f ∗
1 ) = �v(x), ∀x ∈ S1.

Hence if x ∈ S1 and x �= xv , then �F(x, f ∗
1 ) �= 0. Moreover for such x, let

d = xv − x, we have dT � v(x) < 0 and dT � F(x, f ∗
1 ) = dT � v(x) < 0,

since v(x) is a convex function with a unique minimizer xv . So d is a descent
direction of F(x, f ∗

1 ) at the point x with x ∈ S1 and x �= xv . Hence any one of
local minimizers or stationary points except xv of problem (AP ) cannot be in the
region S1 = {x ∈ X : f (x) � f ∗

1 }. �
Since S1 ∪ {x ∈ X : f (x) < f ∗

1 } = X, Theorem 3 implies the following
corollary.

COROLLARY 1. Any one of local minimizers or stationary points of problem
(AP ) except xv must be in the region S2 = {x ∈ X : f (x) < f ∗

1 }.
However, if h = 0, then F(x, f ∗

1 ) = v(x), and F(x, f ∗
1 ) has a unique minimizer

xv . Thus if xv ∈ {x ∈ X : f (x) � f ∗
1 }, then by Theorem 3, F(x, f ∗

1 ) has no local
minimizers or stationary points in the region S2. So we have one question that for
what h the function F(x, f ∗

1 ) has local minimizers or stationary points in the region
S2 = {x ∈ X : f (x) < f ∗

1 }. In fact, suppose that f ∗ is the global minimal value of
problem (P ), we have the following theorem.

THEOREM 4. Suppose that f ∗
1 is not the global minimal value of problem (P ),

i.e., f ∗
1 > f ∗, and suppose that parameter h satisfies that h > 1/u(f ∗

1 −f ∗). Then
all global minimizers of problem (AP ) are in the region S2 = {x ∈ X : f (x) <

f ∗
1 }.

Proof. Since F(x, f ∗
1 ) is a continuous function in the closed box X, it has a

global minimizer in X. For any x ∈ S1, we have f (x) � f ∗
1 , max{0, f ∗

1 −f (x)} =
0 and

F(x, f ∗
1 ) = v(x)[1 − h · u(max{0, f ∗

1 − f (x)})] = v(x) � 0. (2.1)

Since f ∗
1 > f ∗, it is true that S2 �= ∅. By the supposition of Theorem 4, for a global

minimizer x∗ of problem (P ), we have f (x∗) = f ∗, and

1 − h · u(max{0, f ∗
1 − f (x∗)}) = 1 − h · u(f ∗

1 − f ∗}) < 0,
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F(x∗, f ∗
1 ) = v(x)[1 − h · u(max{0, f ∗

1 − f (x∗)})] < 0.

Thus for any x ∈ S2, we have f (x) < f ∗
1 and max{0, f ∗

1 −f (x)} = f ∗
1 −f (x) > 0,

and if such x satisfies that u(max{0, f ∗
1 − f (x)}) � 1

h
, then

F(x, f ∗
1 ) = v(x)[1 − h · u(max{0, f ∗

1 − f (x)})] � 0, (2.2)

and if such x satisfies that u(max{0, f ∗
1 − f (x)}) > 1

h
, then

F(x, f ∗
1 ) = v(x)[1 − h · u(max{0, f ∗

1 − f (x)})] < 0. (2.3)

So by (2.1)-(2.3), we know that all global minimizers of problem (AP ) are in the
region S2 = {x ∈ X : f (x) < f ∗

1 }. �
Theorem 4 shows that all global minimizers of problem (AP ) are in the region

S2 = {x ∈ X : f (x) < f ∗
1 } if parameter h is large enough. Hence F(x, f ∗

1 ) has
local minimizers or stationary points in the region S2 if h is large enough.

According to the above analysis, if f ∗
1 is smaller, then region S1 is larger, and

S2 is smaller. Especially, if f ∗
1 is already the global minimal value of problem

(P ), then S1 = X, and S2 = ∅. Thus with the decreasing of f ∗
1 , the number of

local minimizers or stationary points of problem (AP ) will decrease, and at last
if f ∗

1 is the global minimal value of problem (P ), then problem (AP ) is a convex
programming problem and has only one minimizer xv .

Moreover if we use any local optimization method to minimize the auxiliary
function F(x, f ∗

1 ) on X from any initial point, then by Theorems 3 and 4, it is
obvious that the minimization sequence converges either to xv or to a point x′ ∈ X

such that f (x′) < f ∗
1 . If we find such x′, then using any local optimization method

to minimize function f (x) on X from initial point x′, we can find a point x′′ ∈ X

such that f (x′′) � f (x′). This is also the main idea of our algorithm presented in
the next section to find a global minimizer of problem (P ).

However, generally we do not know the global minimal value of problem (P ),
so we do not know how large of h would have to be to satisfy the condition of
Theorem 4. But for practical consideration, given a desired optimality tolerance
ε > 0, problem (P ) might be considered solved if we can find an x ∈ X such that
f (x) < f ∗ + ε. So we develop a lower bound of h in the following theorem which
depends only on the parameter ε.

THEOREM 5. Let ε be a sufficiently small positive parameter, and let h > 1
u(ε)

.
Then all global minimizers of problem (AP ) are in the region {x ∈ X : f (x) <

f ∗ + ε}, and if f ∗
1 � f ∗ + ε, then {x ∈ X : f (x) < f ∗ + ε} is contained in

S2 = {x ∈ X : f (x) < f ∗
1 }.

Proof. Since h > 1
u(ε)

= 1
u((f ∗+ε)−f ∗) , it is direct by Theorem 4 that all global

minimizers of problem (AP ) are in the region {x ∈ X : f (x) < f ∗ +ε}. Moreover
by the assumption that f ∗

1 � f ∗ + ε, it is obvious that {x ∈ X : f (x) < f ∗ + ε} ⊆
S2 = {x ∈ X : f (x) < f ∗

1 }. �
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Thus given a desired optimality tolerance ε > 0, for h > 1
u(ε)

, if we find one
global minimizer x of problem (AP ), then by Theorem 5, x ∈ {x ∈ X : f (x) <

f ∗ + ε} and it is an approximate global minimal solution of problem (P ).
By Theorem 5, the following corollary holds obviously.

COROLLARY 2. Let f ∗
L be the least local minimal value of problem (P ) which is

larger than the global minimal value f ∗ of problem (P ). If h > 1
u(f ∗

L−f ∗) , then all
global minimizers of problem (AP ) are in the region {x ∈ X : f (x) < f ∗

L}.
If a local search used to minimize F(x, f ∗

1 ) and f (x) is strictly descent and can
converge to a local minimizer, then during the minimization of F(x, f ∗

1 ), if we find
an x′ ∈ {x ∈ X : f (x) < f ∗

L}, then by Lemma 1 in the next section, starting from
x′ to minimize f (x) on X will converge to a global minimizer of problem (P ). So
the parameter ε need not be too small. Theoretically, by Corollary of Theorem 5, ε
should not be greater than f ∗

L − f ∗.

3. The algorithm and its asymptotic convergence

Basing on the theory developed in Section 2, we use multistart local search method
to solve problem (AP ) to find a better minimal value of problem (P ) than the
current one f ∗

1 . The algorithm is described as follows.

ALGORITHM 1.
Step 1. Select randomly a point x0 ∈ X, set f ∗

1 = f (x0), x∗
1 = x0. Let h be a

sufficiently large positive number, and let NL be a sufficiently large integer.
Step 2. Choose a convex function v(x) with a unique minimizer xv, and construct

an auxiliary function F(x, f ∗
1 ). Set N = 0.

Step 3. If N � NL, then go to Step 6.
Step 4. Set N = N + 1. Draw an initial point from a uniform distribution over

X, and start from which to minimize F(x, f ∗
1 ) on X using any local optimization

method. Suppose that x′ is an obtained local minimizer. If x′ = xv , then go to Step
3, otherwise go to Step 5.

Step 5. Minimize f (x) on X with initial point x′, and obtain a local minimizer
x∗

2 of f (x). Let x∗
1 = x∗

2 , f ∗
1 =f (x∗

2 ) and go to Step 2.
Step 6. Stop the algorithm, and output x∗

1 and f ∗
1 as an approximate global

minimal solution and an approximate global minimal value of problem (P ) re-
spectively.

In Step 1 of the above algorithm, parameter h is set large enough. In fact, if one
is satisfied with a solution x such that f (x) < f ∗ + ε, where ε is a sufficiently
small positive number, then by Theorem 5 in Section 2, the value of h should be
greater than 1

u(ε)
.

Now we discuss the stopping rule of Algorithm 1. Note that after getting a
current minimal value f ∗

1 of problem (P ), Algorithm 1 uses multistart local search
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method to find a better local minimal value of problem (P ) than f ∗
1 , where para-

meter N is used to count how many local searches have been performed, and
NL is the maximum number of local searches to be performed to minimize the
function F(x, f ∗

1 ) on X. Then how large would NL have to be to terminate the
minimization of F(x, f ∗

1 ) on X? Boender and Rinnooy Kan [10] developed some
Bayesian stopping rules for multistart local search method. We use one of them for
our algorithm.

Assume that w is the number of different local minimizers of F(x, f ∗
1 ) on X

having been discovered, and N is the number of minimizations of F(x, f ∗
1 ) for

finding these w local minimizers. Boender and Rinnooy Kan [10] discovered that
the Bayesian estimate of the total number of local minimizers of F(x, f ∗

1 ) on X is
w(N−1)
N−w−2 . Hence if the value w(N−1)

N−w−2 is very close to w, then one can probabilistically
say that F(x, f ∗

1 ) has only w local minimizers on X, which have already been
found, and we can terminate the algorithm.

Generally speaking, if the dimension of a global minimization problem is higher,
then more local searches must be performed to find a global minimizer. So we
think it would be better if a stopping criterion can be related to the dimension of
the problem to be solved. Therefore an appealing simple stopping criterion is to
terminate the algorithm if

w(N − 1)

N − w − 2
� w + 1

n
, (3.1)

where n is the dimension of the problem to be solved.
Furthermore, for the function F(x, f ∗

1 ) with parameter h large enough, if we
can conclude that it has only one local minimizer, then we can conclude that a
global minimizer of problem (P ) has been found. So by the stopping rule (3.1),
for w = 1, we have N � 2n + 3. This means that if we can only find the
prefixed local minimizer xv of F(x, f ∗

1 ) after 2n + 3 minimizations of F(x, f ∗
1 )

with initial points drawn from a uniform distribution over X, then we can conclude
probabilistically that F(x, f ∗

1 ) has only one local minimizer on X, and a global
minimizer of problem (P ) has been found. So we set NL = 2n + 3, and terminate
the computation if N � NL = 2n + 3.

Next we prove the asymptotic convergence of Algorithm 1.
Suppose that the local optimization method used in Algorithm 1 is strictly des-

cent and can converge to a local minimizer of the problem being solved. Let f ∗
L

be the least local minimal value of problem (P ) which is larger than the global
minimal value f ∗ of problem (P ), and suppose that the Lebesgue measure of the
set S∗

L = {x ∈ X : f (x) < f ∗
L} is m(S∗

L) > 0.

LEMMA 1. With an initial point x′ ∈ S∗
L = {x ∈ X : f (x) < f ∗

L}, the minim-
ization sequence generated by the minimization of f (x) on X will converge to a
global minimizer of f (x) on X.

Proof. Starting from an initial point x′ ∈ S∗
L = {x ∈ X : f (x) < f ∗

L}, the
minimization sequence generated by the minimization of f (x) on X will converge
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to a local minimizer x∗
1 of f (x) on X. Since f (x′) < f ∗

L , and the minimization
sequence is strictly descent, it follows that f (x∗

1 ) < f ∗
L . By the assumption that f ∗

L

is the least local minimal value of problem (P ) larger than f ∗, we have f (x∗
1 ) =

f ∗, i.e., the minimization sequence converges to a global minimizer of f (x) on
X. �

During the k-th iteration of Algorithm 1, let xk be the k-th random point drawn
from a uniform distribution over X at Step 4, and let yk be the best local minimal
value found so far, i.e., y0 = f (x0), and yk = yk−1 if starting from the initial point
xk the minimization sequence generated by the minimization of F(x, f ∗

1 ) on X

converges to the prefixed point xv , otherwise yk is a new value less than yk−1.

THEOREM 6. If h > 1
u(f ∗

L−f ∗) and NL = +∞, then yk converges to the global

minimal value f ∗ of problem (P ) with probability 1, i.e., P { lim
k→∞ yk = f ∗} = 1.

Proof. To prove Theorem 6 is equivalent to prove that

P {
∞⋂
k=1

∞⋃
l=k

(|yl − f ∗| � ε)} = 0,∀ε > 0. (3.2)

If h > 1
u(f ∗

L−f ∗) , then by Theorems 3 and 5 of section 2, it is obvious that f ∗ �
yk � yk−1, i.e., {yk}∞

k=0 is monotonically decreasing.

Let q = 1 − m(S∗
L)

m(X)
. By Lemma 1 and the monotonicity of {yk}∞

k=0, ∀ε > 0, we
have

P {yl − f ∗ � ε} = P {
l⋂

i=1

(yi − f ∗ � ε)}

� P {
l⋂

i=1

(xi /∈ S∗
L)} =

l∏
i=1

P {xi /∈ S∗
L}

=
l∏

i=1

(1 − m(S∗
L)

m(X)
) = ql.

Thus

P {
∞⋂
k=1

∞⋃
l=k

(yl − f ∗ � ε)} � lim
k→∞

P {
∞⋃
l=k

(yl − f ∗ � ε)}

� lim
k→∞

∞∑
l=k

P {yl − f ∗ � ε} � lim
k→∞

∞∑
l=k

ql = lim
k→∞

qk

1 − q
.

Since m(S∗
L) > 0, we have 0 � q < 1, and qk

1−q
→ 0 if k → ∞. Hence (3.2)

holds. �
Hence by Theorem 6, the current local minimizer x∗

1 of problem (P ) generated
by Algorithm 1 converges with probability one to a global minimizer of problem
(P ).
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4. Test results and comparison with other methods

In this section, we test our algorithm on a set of standard global minimization
problems and compare the performance of our algorithm with some well known
methods for global minimization problems.

We choose the unique minimizer xv of v(x) as xv = x∗
1 , and choose v(x) =

(x − xv)
T (x − xv), u(t) = t2. We set NL = 2n + 3, where n is the dimension of

the global minimization problem to be solved. We take h to be a sufficiently large
positive number, say h = 106.

In practical implementation of Algorithm 1, the initial point in Step 4 of Al-
gorithm 1 is drawn from a uniform distribution over the boundary of X instead
of over X. Since by Theorems 3 and 4 in Section 2, from any initial point the
minimization sequence generated by the minimization of F(x, f ∗

1 ) on X converges
either to xv or to a point x′ ∈ X such that f (x′) < f ∗

1 , to avoid converging to xv
too frequently, we should start the minimization of F(x, f ∗

1 ) from points at the
boundary of X.

In Steps 4 and 5 of Algorithm 1, we prefer using an inexact line search method
in the local optimization method, since in this way we can explore the solution
space with more trial points. Hence in practical implementation of Algorithm 1, we
use BFGS local optimizer with an inexact line search method to minimize F(x, f ∗

1 )

and f (x) in Steps 4 and 5 of Algorithm 1.
The above implementation details can be summarized in an algorithm as fol-

lows.

ALGORITHM 2.
Step 1. Select randomly a point x0 ∈ X, set f ∗

1 = f (x0), x∗
1 = x0, h = 106. Let

NL = 2n + 3, where n is the dimension of the global minimization problem to be
solved.

Step 2. Let xv = x∗
1 , v(x) = (x − xv)

T (x − xv), u(t) = t2, and construct an
auxiliary function F(x, f ∗

1 ). Set N = 0.
Step 3. If N � NL, then go to Step 6.
Step 4. Set N = N + 1. Draw an initial point from a uniform distribution over

the boundary of X, and start from which to minimize F(x, f ∗
1 ) on X using BFGS

local optimizer with an inexact line search method. During the minimization of
F(x, f ∗

1 ), if there exists a point xk with f (xk) < f ∗
1 , then stop minimizing F(x, f ∗

1 )

and go to Step 5, otherwise go to Step 3.
Step 5. Minimize f (x) on X with initial point xk, and obtain a local minimizer

x∗
2 of f (x). Let x∗

1 = x∗
2 , f ∗

1 =f (x∗
2 ) and go to Step 2.

Step 6. Stop the algorithm, and output x∗
1 and f ∗

1 as an approximate global
minimal solution and an approximate global minimal value of problem (P ), re-
spectively.

We test the above algorithm on a set of standard global minimization prob-
lems on a personal computer with Intel CPU 586/200 and internal memory 128M.
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The algorithm finds global minimal solutions of these problems. We compare the
performance of our algorithm with TRUST [1], the Diffusion Equation method
[7], the Filled Function method [6], the Multilevel Single Linkage method [11]
and Levy’s Tunneling Algorithm [9]. The comparison criterion is the number of
function evaluations. The computational results of these methods are taken from
the papers cited.

For our algorithm, the number of function evaluations includes the number
of function evaluations of the objective function f (x) and that of the auxiliary
function F(x, f ∗

1 ). Also, the number of function evaluations of the Filled Func-
tion method recorded in the tables of this section includes the number of function
evaluations of the objective function f (x) and that of the filled function.

In the tables of this section, the symbol ‘–’ means the number of function
evaluations is too large to record.

PROBLEM 1. Branin’s function

f (x) = (x2 − 5.1x2
1

4π2
+ 5x1

π
− 6)2 + 10(1 − 1

8π
) cos x1 + 10

has many local minimizers in the domain −5 � x1 � 10, 0 � x2 � 15, but the
global minima are x∗ = (3.141593, 2.275000)T , x∗ = (−3.141593, 12.275000)T .
The global minimal value is f ∗ = 0.397667.

PROBLEM 2. The three hump camel function

f (x) = 2x2
1 − 1.05x4

1 + x6
1

6
− x1x2 + x2

2

has three local minimizers in the domain −3 � xi � 3, i = 1, 2, and the global
minimizer is x∗ = (0, 0)T . The global minimal value is f ∗ = 0.

PROBLEM 3. The Treccani function

f (x) = x4
1 + 4x3

1 + 4x2
1 + x2

2

has two local minimizers x∗ = (−2, 0)T and x∗ = (0, 0)T in the domain −3 �
x1 � 3, i = 1, 2. The global minimal value is f ∗ = 0.

PROBLEM 4. The six hump camel function

f (x) = 4x2
1 − 2.1x4

1 + x6
1

3
+ x1x2 − 4x2

2 + 4x4
2

has six local minimizers in the domain −3 � x1 � 3, −1.5 � x2 � 1.5,
and two of them are global minimizers: x∗ = (−0.089842, 0.712656)T , x∗ =
(0.089842,−0.712656)T . The global minimal value is f ∗ = −1.031628.
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PROBLEM 5. The two dimensional Shubert function

f (x) = {
5∑

i=1

i cos[(i + 1)x1 + i]}{
5∑

i=1

i cos[(i + 1)x2 + i]}

has 760 local minimizers in the domain −10 � xi � 10, i = 1, 2, and 18 of them
are global minimizers. The global minimal value is f ∗ = −186.730909.

PROBLEM 6. The two-dimensional Shubert function

f (x) = {
5∑

i=1

i cos[(i + 1)x1 + i]}{
5∑

i=1

i cos[(i + 1)x2 + i]} +

1

2
[(x1 + 0.80032)2 + (x2 + 1.42513)2]

has roughly the same behavior as the function presented in Problem 5 in the
domain −10 � xi � 10, i = 1, 2, but has a unique global minimizer x∗ =
(−0.80032,−1.42513)T . The global minimal value is f ∗ = −186.730909.

PROBLEM 7. The two-dimensional Shubert function

f (x) = {
5∑

i=1

i cos[(i + 1)x1 + i]}{
5∑

i=1

i cos[(i + 1)x2 + i]} +

[(x1 + 0.80032)2 + (x2 + 1.42513)2]

in the domain −10 � xi � 10, i = 1, 2 has roughly the same behavior and
the same global minimizer and global minimal value as the function presented in
Problem 6, but with steeper slope around global minimizer.

PROBLEM 8. Shekel’s function

f (x) = −
m∑
i=1

1

(x − ai)T (x − ai) + ci

has m local minimizers in the domain 0 � xi � 10, i = 1, 2, 3, 4, but only one
global minimizer, where m=5, or 7, or 10. The parameters are presented in the
following table.
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Table 1. Comparison of sequentianl convexification method(SCM) and other algorithms on
number of function evaluations

No. n SCM TRUST Diffusion equation Filled function MSL Tunneling

1 2 57 60 189 206

2 2 46 429

3 2 61 313

4 2 55 168 120 184 1496

5 2 103 256 290 12160

6 2 166 234 2912

7 2 232 439 2180

8(m=5) 4 156 12000 390 404

8(m=7) 4 159 12000 410 not found

8(m=10) 4 not found 12000 not found 564

9 2 98 120 148 148

i ai ci

1 4 4 4 4 0.1

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 5 3 3 0.3

8 8 1 8 1 0.7

9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5

PROBLEM 9. The Goldstein–Price function

f (x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2 )]
×[30 + (2x1 − 3x2)

2(18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2 )]
has four local minimizers in the domain −2 � xi � 2, i = 1, 2, 3, 4, but only one
global minimizer x∗ = (0,−1)T with the global minimal value f ∗ = 3.

PROBLEM 10. The function

f (x) = 1

10
{sin2(3πx1)+

n−1∑
i=1

(xi−1)2[1+sin2(3πxi+1)]+(xn−1)2[1+sin2(2πxn)]}
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Table 2. Comparison of sequentianl convexification
method(SCM) and other algorithms on number of
function evaluations

No. n SCM Filled function Tunneling

10 2 143 252 2653

3 331 339 6955

4 674 1012 3865

5 1312 938 10715

6 824 2262 12786

7 675 2951 16063

8 1058 3634

9 2736 3623

10 1567 2969

11 4396 –

12 1821 –

13 1666 –

14 21830 –

15 2127 1555

16 2987 –

17 38603 –

18 3752 –

19 4509 –

20 3593 –

21 3485 4668

22 6703 –

23 23058 –

24 2558 –

25 23141 2361

30 13732

40 10975

50 11736

has roughly 30n local minimizers in the domain −10 � xi � 10, i = 1, · · · , n,
but only one global minimizer x∗ = (1, 1, · · · , 1)T with the global minimal value
f ∗ = 0.

PROBLEM 11. The function

f (x) = 1

2

n∑
i=1

(x4
i − 16x2

i + 5xi)
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Table 3. Comparison of sequentianl con-
vexification method(SCM) and TRUST
on number of function evaluations

No. n SCM TRUST

11 1 23 38

2 26 22

3 27 21

4 29 21

5 27

6 32

7 117

8 105

9 74

10 126

11 83

12 132

13 303

14 581

15 469

16 795

17 250

18 2234

19 1297

20 1306

21 566

22 1370

23 1619

24 883

25 1540

30 1928

40 2073

50 1164

has 2n local minimizers and only one global minimizer x∗ = (−2.90354, −2.90354,
· · · , −2.90354)T .

The test results of the above problems are presented in Tables 1–3. In Table 1,
our algorithm did not find a global minimal solution of Problem 8 with m = 10,
but after more iterations with 4617 function evaluations, the method found a global
minimal solution of the problem.
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5. Conclusions

This paper has introduced SCM, a new effective and simple method for continu-
ous global minimization problems. The method is based on a transformation of
the objective function f (x) into an auxiliary function F(x, f ∗

1 ), where f ∗
1 is the

current minimal value of the objective function. All local minimizers or stationary
points except a prefixed one of the auxiliary function are in the region {x ∈ X :
f (x) < f (x∗

1 )}. Minimizing F(x, f ∗
1 ) with any local optimizer, the minimization

sequence will converge either to the prefixed point or to a point x′ with f (x′) < f ∗
1 .

Benchmark comparisons with other global optimization procedures have demon-
strated that our method is very efficient, as measured by the number of function
evaluations. Further research should be to construct new auxiliary functions with
the same properties of F(x, f ∗

1 ), and find the best one among them.
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